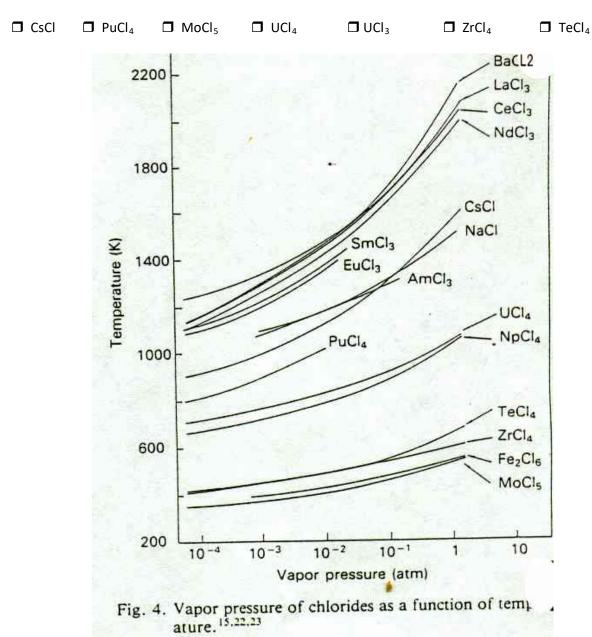
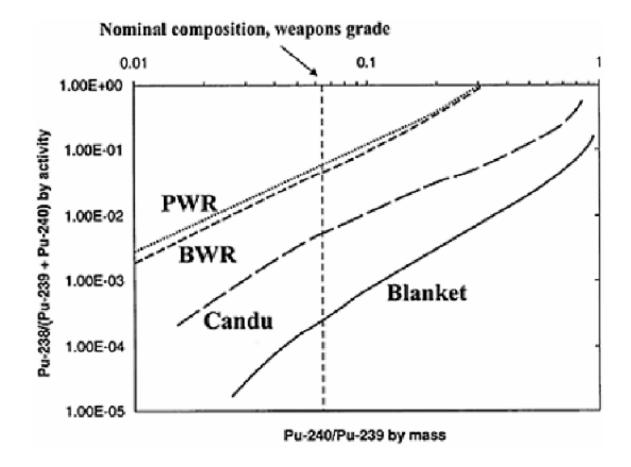

	RDCH 702		Last Name:				
Ass 1 st	iz 5 signed 5 December Due 13 December Due 15 December	18		First Name:_			
Lec Lec 12	iz Topics cture 9 Separations cture 10 In reactor cture 11 Application Nuclear Forensics	chemistry on of Nucle			ا دادید میرانده ا		ska fallavija a
	e the lecture notes estions.	, Charl Or ti	ie nuciiues, table	e or the isoto	pes, and web ii	iiks to aliswer t	ine ronowing
1.	(20 Points) The separation of Pu from U in PUREX is achieved by reduction.						
	1.1. What is the			s backextract	ed from the or	ganic phase to t	he aqueous
	phase? 1.2. Select the reductants that have been used in the PUREX process.						
	H ₂	e(CN) ₆] ⁴⁻	□ NH₃OH ⁺ NO		a 🗖 l	J ⁴⁺	Fe(H ₂ NO ₃ S) ₂
	1.3. What are su organic phase	se?	acid concentrat				
	1.4. What is the organic ligand in the PUREX process?						
	1.5. What is the oxidation state of the initially extracted uranium in the PUREX process?						
2.	(30 Points) Where is one likely to find a higher Pu concentration in used nuclear fuel?						
	2.1. What is reason for the higher Pu concentration in the used nuclear fuel?						
	 2.2. Identify the fission products which have distributions in nuclear influenced by thermal processes? ☐ Mo ☐ Cs ☐ Xe ☐ Sr ☐ Kr ☐ Zr 						

2.3. Swelling and creep are physical changes in materials that can be induced by radiation. Identify swelling and creep from the figure below?



- 2.4. Perovskite phases (ABO₃) can form in nuclear fuel. What is reason this phase can form in fuel?
- lacktriangledown High noble gas fission product formation lacktriangledown Fuel-cladding chemical interactions
- \square Concentration of fission elements Sr, Zr, and lanthanides exceed UO $_2$ solubility limit
- \square Role of coolant in fuel chemistry \square Formation of fission element solids-solutions with UO₂
- 3. (20 Points) Consider the following question on isotopes
 - 3.1. What is the role of ²⁴¹Am in smoke detectors?

- 3.2. The isotope $^{\rm 223}\mbox{Ra}$ is used in the radiopharmaceutical Xofigo.
 - 3.2.1. Is this a diagnostic or therapeutic radiopharmaceutical?
 - 3.2.2. How is the isotope ²²³Ra produced for this application?
- \square ²²³Fr(p,n)²²³Ra \square ²³²Th(p,¹⁰Li)²²³Ra \square ²²⁶Ra(n, γ)²²⁷Ra, followed by decay to form ²²³Ra
 - 3.3. The isotope ²³⁸Pu is used as a power source for space exploration.
 - 3.3.1. Identify methods used to produce ²³⁸Pu for this application?


- \square ²³⁷Np(n, γ) ²³⁸Np, followed by ²³⁸Np beta decay \square Alpha decay of ²⁴²Cm \square ²³⁹Pu(n,2n) ²³⁸Pu 3.4. A 100 g sample of PuO₂, at 83.5 % ²³⁸Pu, has what power? ______ W
- 4. (10 points) One has a mixture of metal ions as chloride salts from a pyroprocessing separation route. The metal chlorides can be separated by volatility if a species vapor pressure above 1.0 Bar can be achieved. Select those species that will be separated from the salt at 550 °C using the figure below.

5. (10 Points) A sample of interdicted Pu is evaluated. The resulting data is below.

Isotope	²³⁸ Pu	²³⁹ Pu	²⁴⁰ Pu
Activity (Bq)	978	7.16E4	2.62E4
Mass (g)		3.12E-5	3.12E-6

- 5.1. What was used to produce the Pu?
- 5.2. The interdicted Pu sample is an alloy. What alloying element would be a signature for device material?
- □ Al □ Ga □ Nb □ Zr □ Mo □ Hf

Digital	Signature		